Category: CompMet
CompMet is the category whose objects are complete metric spaces and arrows are short maps.
Facts Derived from Enrichment
(CompMet doesn't seem to have any notable subcategories.)
Limits
Colimits
categories: CompMet
This data as json
name | objects_hr | arrows_hr |
---|---|---|
CompMet | complete metric spaces | short maps |
Links from other tables
- 0 rows from internal_commutative_monoids in categories_of_commutative_monoids
- 0 rows from parent in categories_of_commutative_monoids
- 0 rows from completion in karoubi_envelopes
- 0 rows from category in karoubi_envelopes
- 0 rows from internal_semigroups in categories_of_semigroups
- 0 rows from parent in categories_of_semigroups
- 0 rows from category in enrichments
- 0 rows from homs in enrichments
- 0 rows from internal_relations in bicategories_of_relations
- 0 rows from parent in bicategories_of_relations
- 0 rows from category in categorical_structure
- 0 rows from subcategory in subcategories
- 0 rows from parent in subcategories
- 0 rows from groupoid in cores
- 0 rows from category in cores
- 0 rows from internal_monoids in categories_of_monoids
- 0 rows from parent in categories_of_monoids
- 0 rows from internal_rings in categories_of_rings
- 0 rows from parent in categories_of_rings
- 0 rows from skeleton in skeletons
- 0 rows from category in skeletons
- 0 rows from partial_category in restriction_categories
- 0 rows from total_subcategory in restriction_categories
- 0 rows from category in topoi
- 0 rows from category in monoidal_categories
- 0 rows from supercategory in full_subcategories
- 0 rows from subcategory in full_subcategories
- 0 rows from supercategory in essentially_wide_subcategories
- 0 rows from subcategory in essentially_wide_subcategories
- 0 rows from category in disconnected_categories
- 0 rows from pointed in maybe_monads
- 0 rows from base in maybe_monads
- 0 rows from monoids in list_monads
- 0 rows from base in list_monads
- 0 rows from multisets in multiset_monads
- 0 rows from base in multiset_monads
- 0 rows from parent in categories_of_lie_algebras
- 0 rows from internal_lie_algebras in categories_of_lie_algebras
- 0 rows from parent in categories_of_abelian_groups
- 0 rows from internal_abelian_groups in categories_of_abelian_groups
- 0 rows from parent in categories_of_simplicial_objects
- 0 rows from internal_simplicial_sets in categories_of_simplicial_objects
- 0 rows from category in categories_with_animal_names
- 0 rows from internal_groups in categories_of_groups
- 0 rows from parent in categories_of_groups
- 0 rows from supercategory in reflective_subcategories
- 1 row from subcategory in reflective_subcategories
- 0 rows from horizontal_2cat in double_categories
- 0 rows from vertical_2cat in double_categories
- 0 rows from example_categeory in logical_completeness
- 0 rows from complete_2category in logical_completeness
- 0 rows from category in arrow_categories
- 0 rows from arrows in arrow_categories
- 0 rows from op in opposite_categories
- 0 rows from category in opposite_categories
- 0 rows from category in dagger_categories
- 0 rows from name in 2-categories