All Subcategories
A subcategory has some of the objects and arrows of its parent category. There are several common special cases:
- Full subcategories have all of the parent category's arrows.
- Essentially wide subcategories have all of the parent category's objects.
all_subcategories (view)
168 rows
This data as json, CSV (advanced)
Suggested facets: kind
| subcategory | supercategory | kind |
|---|---|---|
| *Aut | SymmMonCat | plain |
| 1 | 1 | contravariant equivalence |
| Ab | Ab | groups |
| Ab | Grp | groups |
| Ab | Grp | reflection |
| Ab | Mon | groups |
| Ab | Set | Abelian groups |
| AbTor | Ab | plain |
| AbTor | Tor | plain |
| AbTorF | Ab | reflection |
| AdicCRing | AdicRing | plain |
| AdicRing | TopRing | plain |
| AdmRep | RT(K₂) | plain |
| Alg(Ab) | Mod(Ab) | monoids |
| Ass | Eff | plain |
| Aut | Set | plain |
| BanAlg | Ban_k | semigroups |
| BanRing | CompNormGrp | commutative monoids |
| Ban_k | Met | plain |
| Ban_k | Ste | full |
| Bij | Set | core |
| BoolAlg | DistLat | plain |
| BoolAlg | HeytAlg | plain |
| BoolAlg | Lat | full |
| BrMonCat | MonCat | full |
| CMon | Ab | plain |
| CMon | Mon | monoids |
| CMon | Set | commutative monoids |
| CMon | Set* | plain |
| CPO | DCPO | plain |
| CRing | Ab | commutative monoids |
| CRing | Ring | reflection |
| CW | Comp | plain |
| CartSp | Ban_k | plain |
| CartSp | Diff | plain |
| CartSp | Vect_k | plain |
| Cat | 2Cat | plain |
| Cat | BiCat | plain |
| Cat | SSet | reflection |
| CommAlg(Ab) | Mod(Ab) | commutative monoids |
| Comp | Haus | plain |
| Comp | Top | reflection |
| CompBoolAlg | BoolAlg | plain |
| CompBoolAlg | CompLat | plain |
| CompBoolAlg | FinSet | contravariant equivalence |
| CompCat | *Aut | plain |
| CompCat | TracedSymmMonCat | plain |
| CompLat | Lat | plain |
| CompMet | Met | reflection |
| DCPO | Pos | plain |
| DGCAlg | Ch.(Vect_k) | commutative monoids |
| DGph | Quiv | plain |
| DagCat | Cat | plain |
| DagCompCat | CompCat | plain |
| DagCompCat | DagCat | plain |
| DblCat | 2Cat | plain |
| Diff | Man | plain |
| DistLat | Lat | plain |
| Eff | RT(K₁) | plain |
| EffAdmRep | AdmRep | plain |
| EffAdmRep | KV | plain |
| Field | CRing | full |
| FinGrp | FinSet | groups |
| FinGrp | Grp | full |
| FinHilb | Hilb | full |
| FinOrd | FinSet | skeleton |
| FinSet | CompBoolAlg | contravariant equivalence |
| FinSet | Set | full |
| FinVect_k | Mat_k | equivalence |
| FinVect_k | Vect_k | full |
| FinVect_q | FinVect_k | full |
| Frm | DistLat | plain |
| Frm | Loc | contravariant equivalence |
| Frm | SupLat | plain |
| Grp | Mon | plain |
| Grp | Set | groups |
| Haus | Top | full |
| HeytAlg | Pos | plain |
| Hilb | Ban_k | full |
| Hilb | Hilb | contravariant equivalence |
| Hilb₀ | Hilb | core |
| Ho(Grpd) | Ho(Cat) | full |
| Inj | Set | essentially wide |
| KV | RT(K₂) | plain |
| LMet | Top | plain |
| Lat | Pos | plain |
| Lat | SemiLat | plain |
| LieAlg_k | Vect_k | Lie algebras |
| LieGrp | Man | groups |
| LieRing | Ab | Lie algebras |
| Loc | Frm | contravariant equivalence |
| Man | PDiff | plain |
| Mat_R | Mat_SR | plain |
| Mat_k | FinVect_k | equivalence |
| Mat_k | FinVect_k | skeleton |
| Mat_k | Mat_R | plain |
| Mat_k | Mat_SR | plain |
| Met | PseudoMet | plain |
| Mon | SemiGrp | plain |
| Mon | Set | monoids |
Advanced export
JSON shape: default, array, newline-delimited
CREATE VIEW "all_subcategories" AS select subcategory, parent as supercategory, 'plain' as kind from subcategories UNION select * from all_essentially_wide_subcategories union select * from all_full_subcategories union select cat1, cat2, 'equivalence' from equivalent_categories UNION select cat2, cat1, 'equivalence' from equivalent_categories UNION select category, op, 'contravariant equivalence' from opposite_categories UNION select op, category, 'contravariant equivalence' from opposite_categories UNION select internal_abelian_groups, parent, 'Abelian groups' from categories_of_abelian_groups union select internal_commutative_monoids, parent, 'commutative monoids' from categories_of_commutative_monoids union select internal_groups, parent, 'groups' from categories_of_groups union select internal_lie_algebras, parent, 'Lie algebras' from categories_of_lie_algebras union select internal_monoids, parent, 'monoids' from categories_of_monoids union select internal_rings, parent, 'rings' from categories_of_rings union select internal_semigroups, parent, 'semigroups' from categories_of_semigroups;